设计地源热泵系统的地热换热器需要知道地下岩土的热物性参数。如果热物性参数不准确,则设计的系统可能达不到负荷需要;也可能规模过大,从而加大初期投资。
确定地下岩土热物性参数的传统方法是首先根据钻孔取出的样本确定钻孔周围的地质构成,再通过查有关手册确定导热系数。然而地下地质构成复杂,即使同一种岩石成分,其热物性参数取值范围也比较大。况且不同地层地质条件下的导热系数可相差近十倍,导致计算得到的埋管长度也相差数倍,从而使得地源热泵系统的造价会产生相当大的偏差。
另外,不同的封并材料、埋管方式对换热都有影响,因此只有在现场直接测量才能正确得到地下岩土的热物性参数。但是由于在以往的工程实践中很少涉及这样的问题,既缺乏这方面的数据积累,也缺乏现成的测试方法。
针对此间题,进行了深入的研究,开发出了具有自主知识产权的便携式岩土热物性测试仪,并应用到实际工程中。
1测试仪的原理及构成
地下岩土的导热系数等无法直接测量,只能通过测量温度、热流等相关参数进行反推。pcb抄板在已钻好的钻孔中埋设导管并按设计要求回填,该钻孔中的导管将来可以作为地热换热器的一个支路使用,回路中充满水,让水在回路中循环流动,自某一时刻起对水连续加热相当长的时间(数天),并测量加热功率、回路中水的流量和水的温度及其所对应的时间,最后再根据已知的数据推算出钻孔周围岩土的平均热物性参数。
本仪器由流量传感器、电流传感器、电压传感器、温度传感器、泵、电加热器;管道和主机等缓威。结构面匡如图1所示。
图1中,由于泵的作用,流体由A口进入,流量传感器采集流量信号,温度传感器采集温度信号(T1)。流体通过泵后,由电加热器加热,加热的流体温度信号(T2)由传感器采集,然后流体从B口流出,输入到埋置于深层岩土中的导管内,导管内加热的流体与深层岩上进行热交换后,又从A口返回到仪器内,形成封闭的循环。将在一定时间内连续采集到的加热功率、温度差、流量值作为测量数据,再利用参数估算法求出岩土的平均导热系数,达到检测目的。电流传感器、电压传感器用于对加热器的加热功率进行实时测量,以保证检测精度。
1.1主机硬件
如图2所示,主机由CPU AT89C52芯片、A/D转换芯片TLC2543、串行通讯芯片MAX232、程序存储器27C128、数据存储器AT24C64、键盘、LCD显示器、开关量输出、打印机、电源等构成。各部分的主要功能叙述如下:
各路变送器传来的电流信号在进行滤波和I/V变换后,由TLC2543进行模/数转换。TLC2543是具有11个通道的12位模/数转换芯片,由软件控制信号通道的转换。
程序存储器27C128和数据存储器AT24C64用于存放部分工作程序和测试数据。而AT24C64存储的测试数据在系统停电后不丢失。
MAX232作为串行通讯的专用芯片,用作向上位机传输测试数据。
当前位置:易博PCB抄板工作室 >> 技术文档 >> 深圳电路板克隆提供便携式岩土热物性测试仪设计方案